Спутник

236 349 подписчиков

Свежие комментарии

  • Петр Смирнов
    лицемерие, если плевать на историю, то тогда и плевать про что натворили немцы народам СССР! Или все, или ничего!Европейцы начали ...
  • Юрий Михеев
    У нас тоже вся страна была покрыта аэродромами пока за дело не взялись Сердюков и Чемизов = у них кубышка быстрее на...Закрытием малых а...
  • Анатолий Выходцев
    родилась с "лотерейкой" так и пользуйся по полной пока молода. а ума нет не рассказывать про свою молодость.Стоило ли Елене П...

Квантовый симулятор справился с непривычной для него задачей

Квантовый симулятор справился с непривычной для него задачей

Физики из Российского квантового центра создали пятикубитный квантовый вычислитель и смоделировали с его помощью систему из атомов, обменивающихся фотонами. Вычислитель представлял собой цепь из пяти сверхпроводящих кубитов — транcмонов, каждый из которых симулировал отдельный атом. Авторы использовали модель Бозе-Хаббарда для описания перемещения фотонов между искусственными атомами и показали, что эксперимент и симуляции соответствуют этой модели. Работа опубликована в Physical Review Letters . В отличие от модели Хаббарда , моделирующей движение электронов (электроны являются фермионами) в кристаллической решетке твердого тела, модель Бозе-Хаббарда подходит для приближенного описания взаимодействия бозонов (отсюда «Бозе» в названии) в пространственной решетке. Самой распространенной реализацией модели считается оптическая решетка с ультрахолодными атомами — одна из платформ для квантовых вычислений. На базе такой платформы ученым уже удавалось создать экспериментальные решетки с несколькими миллионами ячеек, в то время как классические вычислители способны точно смоделировать решетки в 100 тысяч раз меньше. Несмотря на то, что удобной платформой для реализации модели Бозе-Хаббарда все еще остаются ультрахолодные атомы, группа ученых под руководством Алексея Устинова (A.

 V. Ustinov) из Российского квантового центра показала, что для этой задачи подходит и платформа из сверхпроводниковых кубитов. Авторы ограничились пятью ячейками при моделировании и экспериментальной реализации модели для исследования взаимодействия и перемещения фотонов в одномерной пространственной решетке. Им удалось найти поведение системы, которое не способна описать классическая теория, и изучить влияние контролируемого беспорядка на транспорт фотонов. Авторы изготовили плату с цепочкой из пяти сверхпроводящих кубитов, каждым из которых можно было управлять отдельно. Микроволновое излучение проходило через всю эту цепочку и его выходной спектр нес информацию о том, что происходило в схеме. С точки зрения модели Бозе-Хаббарда экспериментальную схему можно представить как цепочку ячеек, в каждой из которых может находиться один или несколько фотонов, фотоны могут перемещаться (туннелировать) между ячейками, а фотоны из крайних ячеек могут покинуть цепочку. Авторы меняли параметры двух разных ячеек — крайней левой и средней, после чего сравнивали результаты. Как и предсказывала теория, воздействие на крайнюю ячейку привело к изменениям каждой, а изменение средней влияло только на четные ячейки. Кроме того, ученым удалось обнаружить особенности спектра, которые не поддавались описанию в рамках классической теории. Увеличение мощности падающего излучения приводит к фотонной блокаде и поведение цепочки становится близким к поведению отдельных сверхпроводниковых кубитов. Исследование влияния беспорядка в управлении трансмонами показало, что при достижении достаточного уровня возбуждение первого кубита перестает достигать последнего — это напоминает поведение перехода сверхпроводник-изолятор (первоначальная цель для описания с помощью модели Бозе-Хаббарда). Физики планируют создать более масштабные симуляторы для проверки других более сложных теоретических предположений и в будущем продемонстрировать квантовое превосходство. Кстати, платформа первого эксперимента по демонстрации квантового превосходства — сверхпроводники. Несмотря на то, что китайские ученые опровергли значительную разность во времени вычислений на квантовом симуляторе и классическом компьютере, алгоритм, предложенный в эксперименте, имеет свои преимущества. Оксана Борзенкова

 

Ссылка на первоисточник

Картина дня

наверх